INTRODUCTION

Physical exercises done in liquid environment bring many benefits to physical form (PÖYHÖNEN et al., 2002; CARDOSO et al., 2003; TAKESHIMA et al. 2002; AVELLINI et al. 1983) and each time more, physical education teachers, physicians and physiotherapists are advising this practice. Considering the amount of exercises that can be developed in this kind of environment, hidrogymnastics is one of the more used ones, not only for leisure, maintenance or acquisition of physical conditioning, but also as a way of prevention and recovery of injuries (MORAES et al., 2002). Because of these characteristics, this kind of exercise has been chosen not only by women, but also by men who wish to improve or maintain health.

Recognizing water as an environment used for the practice of physical exercises, it must be considered that alterations occur in the human organism when emerging in it. (PAULA & PAULA, 1998). These physiological reactions occur because of hydrostatic pressure (ARBORELIUS et al., 1972; GLEIM & NICHOLAS, 1989), thermodynamics (CRAIG & DVORAK, 1966) and hydrostatic weight (ALBERTON et al., 2002), and they can vary according to the different temperatures of the water (GLEIM & NICHOLAS, 1989; HALL et al., 1998), depths of immersion (KRUEL et al., 2001; WHITLEY & SCHOENEN, 1987; KRUEL et al., 2002) and initial heart rate (HR) of the individual (COERTJENS et al., 1997). In order to achieve a program of exercises to this reality, it is necessary to have knowledge about the possibilities of working in water, as well as a deep investigation of the liquid environment and its physiological influences (PAULA & PAULA, 1998).

LEITE (1984) says that the measurement of oxygen consumption (VO$_2$) is accepted as the best physiological parameter to evaluate the oxidative metabolic capacity during muscular works above of the basal metabolism. In relation to HR, it is one of the most cardiovascular parameters most affected by the exercise and it is also the most often studied. When an individual is submitted to a cyclic physical exercise, for example, HR increases linearly with the intensity of the physical effort and with VO$_2$ raise (ARAÚJO, 1986 e BROOKS & FAHEY, 1984). For these same authors, this variable can also suffer modifications with the immersion of the individual in liquid environment.

It should be salient that the few studies that were done with hidrogymnastic exercises present different methodology, and, probably because of this, they show different results for HR and VO$_2$ behavior. These works have been realized in isolated exercises, and they do not portray a real class situation, comparing distinct speeds of movements (ALBERTON et al. 2004; CASSADY e NIELSEN, 1992), the aquatic and terrestrial way (CASSADY e NIELSEN, 1992; KRUEL et al. 2001; ALBERTON et al. 2004) and different exercises (JOHNSON et al., 1977; CASSADY e NIELSEN 1992; KRUEL et al. 2001; ALBERTON et al. 2004; OLKOSKI et al. 2005). When these results are applied to our reality, it is possible to question if these variables are going to have the same behaviors showed in these studies in a real class situation.

Aiming to contribute for a safer pedagogical practice, giving subsidies for the planning and lapsing of hidrogymnastic lessons, the purpose of this study was to analyze the behavior of HR and VO$_2$ during the aerobic phase of a hidrogymnastic lesson.

METHODOLOGY

Twelve men, undergraduate students with age of 23,4±4,08, stature of 174,75±6,47 cm, who were used to hidrogymnastic practice, had no physical problems, were taking no drugs that could influence in the studies variables were the group of analysis of this study. The individuals reported themselves voluntarily to data collection in two days: in the first (Stage 1) a cardiorespiratory evaluation was done and in the second (Stage 2) was made the corporal evaluation and the lesson of hidrogymnastic. After being conscious of the procedures of the study, the individuals attended the Laboratório de Fisiologia do Exercício e Performance Humana do Centro de Educação Física e Desportos of Universidade Federal de Santa Maria CEFED/UFSM in pre-established dates, sites and timetable. In this opportunity, each person signed an Informed Consent and Enlightened Term, providing necessary information to fulfill the counter of Individual data, collect of the data of stature (wooden toll with resolution of 0,5 cm), corporal mass (Welmy scale, with resolution of 0,100 kg) and to the accomplishment of the Test of Maximum Effort in ergometric mat (INBRAMED ATL 10200). The protocol used for the effort test was written by Mader and contributiors, which consists in stages of different exercises (JOHNSON et al., 1977; CASSADY e NIELSEN 1992; KRUEL et al. 2001; ALBERTON et al. 2004; OLKOSKI et al. 2005). When these results are applied to our reality, it is possible to question if these variables are going to have the same behaviors showed in these studies in a real class situation.

Aiming to contribute for a safer pedagogical practice, giving subsidies for the planning and lapsing of hidrogymnastic lessons, the purpose of this study was to analyze the behavior of HR and VO$_2$ during the aerobic phase of a hidrogymnastic lesson.

Stage 2 was realized at Laboratório de Cineantropometria of CEFED/UFSM. Initially the individual was submitted to corporal evaluation where skin folds, (scientific compass, Cescorf mark, resolution of 0,1 mm), bones diameter (bars metal with precision of 0,01 mm) and circumferences (metric ribbon Cardiomed with precision of 1 mm). Immediately after, the individual was monitored to the realization of the class, which was realized in a tank 1,71m of diameter and 1,50m depth, that presents possibilities of working in water, with fix inclination of 1% and the speed was increased in 1.8 km. in the end of each stage. During the test, HR was gotten to each minute (Polar mark, Acurex Plus model), and VO$_2$ was measured to each 20 seconds, according to the capacity of the gas analyst AeroSport TEEM 100. In the end of this stage a timetable was booked to realize Stage 2. The break between the stages had at least 72 hours, and the individuals were tested in both stages at the same time and day shift.

Stage 2 was realized at Laboratório de Cineantropometria of CEFED/UFSM. Initially the individual was submitted to corporal evaluation where skin folds, (scientific compass, Cescorf mark, resolution of 0,1 mm), bones diameter (bars metal with precision of 0,01 mm) and circumferences (metric ribbon Cardiomed with precision of 1 mm). Immediately after, the individual was monitored to the realization of the class, which was realized in a tank 1,71m of diameter and 1,50m depth, that presents possibilities of working in water, with fix inclination of 1% and the speed was increased in 1.8 km. in the end of each stage. During the test, HR was gotten to each minute (Polar mark, Acurex Plus model), and VO$_2$ was measured to each 20 seconds, according to the capacity of the gas analyst AeroSport TEEM 100. In the end of this stage a timetable was booked to realize Stage 2. The break between the stages had at least 72 hours, and the individuals were tested in both stages at the same time and day shift.

Stage 2 was realized at Laboratório de Cineantropometria of CEFED/UFSM. Initially the individual was submitted to corporal evaluation where skin folds, (scientific compass, Cescorf mark, resolution of 0,1 mm), bones diameter (bars metal with precision of 0,01 mm) and circumferences (metric ribbon Cardiomed with precision of 1 mm). Immediately after, the individual was monitored to the realization of the class, which was realized in a tank 1,71m of diameter and 1,50m depth, that presents possibilities of working in water, with fix inclination of 1% and the speed was increased in 1.8 km. in the end of each stage. During the test, HR was gotten to each minute (Polar mark, Acurex Plus model), and VO$_2$ was measured to each 20 seconds, according to the capacity of the gas analyst AeroSport TEEM 100. In the end of this stage a timetable was booked to realize Stage 2. The break between the stages had at least 72 hours, and the individuals were tested in both stages at the same time and day shift.

RESULTS AND DISCUSSION

Aiming to analyze the behavior of physiological variable (HR and VO$_2$) during the aerobic phase of a hidrogymnastic class,
were studied 12 undergraduate students, whose characteristics are presented in table 1.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Average</th>
<th>Shunting line standard (DP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>23.42</td>
<td>4.08</td>
</tr>
<tr>
<td>MC (kg)</td>
<td>73.28</td>
<td>8.36</td>
</tr>
<tr>
<td>stature (cm)</td>
<td>174.75</td>
<td>16.47</td>
</tr>
<tr>
<td>%GC</td>
<td>12.42</td>
<td>4.09</td>
</tr>
</tbody>
</table>

In order to get referential values, an ergospirometric test was done, establishing the results of VO2peak and HRmax, what enabled the analysis of the results obtained during the aerobic phase of the class, in percentile terms, in relation to those obtained in the effort test. These results are presented in table 2.

<table>
<thead>
<tr>
<th>Table 2. Averages and DP of the physiological variable (HR, VO2) of the hidrogymnastic class compared to the gotten maximum values in the test of maximum effort.</th>
</tr>
</thead>
<tbody>
<tr>
<td>HR (bpm)</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>Class</td>
</tr>
<tr>
<td>Average</td>
</tr>
<tr>
<td>DP</td>
</tr>
</tbody>
</table>

According to ACSM (2003) the intensity advised range to the improvement of the cardiorespiratory aptitude is of 65-90% considering HRmax and of 50-85% considering the VO2max. Analyzing table 2, it can be observed that the results of the study are, in average, accorded to the advised range (68.52% of HRmax and 53.14% of VO2peak), supposing that the regular practice of the studied class could improve cardiorespiratory aptitude.

Another alternative could be the predominance of exercises from blocks 3 and 4 with a larger intensity during the class, besides the fact that the analyzed individuals were realized with women, what restricts the possibility of relating the data here presented with the existent literature.

One of the most similar works in terms of structure, is Eckerson and Anderson’s (1992), which was realized with women who were also undergraduate students. In this work, the authors found values of 82% of the HRmax and 48% of the VO2max, but they are not similar to the ones found in this study. This difference in the results can be occurred because the water exercises were realized in a temperature of 25.3±2°C, and according to some authors, (Gleim & Nichols, 1988; Hall et al., 1998) physiological reactions in liquid environment can vary with the different temperatures of the water.

The analysis of the literature shows that other studies (Olsson et al., 1992; Griever et al., 2002; Angelis et al., 1998), that used aerobic and non-cyclic exercises, accorded to the characteristics of the studied movements in this work, obtained results that are framed with the advised range by ACSM (2003), as in the present work, despite of the activities had been realized in land.

Another possibility of analysis of the results obtained in this investigation is to consider the blocks of the aerobic phase of the class, because the same was composed by 6 blocks with different characteristics. This analysis is justified because it can be proved, in practice, that there is a distinction of intensity among the blocks and that it follows the pre-established sequence (lower - average - high - high - average - lower).

As already mentioned, works that investigate exercises into the water present a large diversity of methodology practices, despite the fact that all the accessed ones were realized with women, what restricts the possibility of relating the data here presented with the existent literature.

The results presented in table 3 show that the structure used in blocks 1 and 2 did not provide enough stimulus to frame HR responses into the band of percentage of the maximum stipulated for the ACSM (2003). The same happened with VO2 results, but only in block 1.

<p>| Table 3. Average and shunting lines standard for HR and VO2 during each block of the lesson for GP group. |
|---|----------------------------|</p>
<table>
<thead>
<tr>
<th>Variable</th>
<th>Block1</th>
<th>Block2</th>
<th>Block3</th>
<th>Block4</th>
<th>Block5</th>
<th>Block6</th>
</tr>
</thead>
<tbody>
<tr>
<td>HR (%)</td>
<td>61.07±7.04</td>
<td>64.73±5.26</td>
<td>78.15±6.52</td>
<td>80.77±3.85</td>
<td>74.89±4.94</td>
<td>69.04±4.35</td>
</tr>
<tr>
<td>VO2 (%/L)</td>
<td>45.83±7.71</td>
<td>60.41±6.62</td>
<td>73.29±12.8</td>
<td>75.31±10.3</td>
<td>62.74±10.75</td>
<td>57.55±10.73</td>
</tr>
</tbody>
</table>

The results presented in table 3 show that the structure used in blocks 1 and 2 did not provide enough stimulus to frame HR responses into the band of percentage of the maximum stipulated for the ACSM (2003). The same happened with VO2 results, but only in block 1.

<p>| Table 4. Average and shunting lines standard of HR and VO2 during each block of the lesson for GA group. |
|---|----------------------------|</p>
<table>
<thead>
<tr>
<th>Variable</th>
<th>Block1</th>
<th>Block2</th>
<th>Block3</th>
<th>Block4</th>
<th>Block5</th>
<th>Block6</th>
</tr>
</thead>
<tbody>
<tr>
<td>HR (%)</td>
<td>54.75±3.09</td>
<td>56.32±4.38</td>
<td>64.82±5.99</td>
<td>68.51±4.48</td>
<td>64.35±2.25</td>
<td>61.29±2.96</td>
</tr>
<tr>
<td>VO2 (%/L)</td>
<td>38.38±5.35</td>
<td>17.03±1.96</td>
<td>56.25±5.95</td>
<td>59.03±6.96</td>
<td>43.55±8.95</td>
<td>37.45±3.49</td>
</tr>
</tbody>
</table>

Table 4 results show that despite of GA had presented a general average below of the band recommended by the above-mentioned literature, the structure of the class used as standard in this study was enough for the individuals present satisfactory values in the blocks with larger depth (3 and 4), indicating that for this particular group the intensity of the class should be larger in order to let them enjoy the benefits that the class provides.

In this point of view, the results presented by this study can suggest alternatives in the prescription of classes for groups with similar characteristics of the group studied. It is salient the necessity of caring the structure of the first two blocks when elaborating a class, because the analysis presented here is referred to the aerobic phase of the hidrogymnastic class, that should provide enough stimulation for benefic adaptations to the organism, what did not happen in these blocks.

However, analyzing the DP showed in table 2, elevated values can be observed for the variable presented. Considering that the average values obtained are presented in the low limit of the advised range, some of the studied individuals do not fit in it. Analyzing individual data, it was observed that 67% of the individuals presented an average of 60.12% of VO2peak and 75% of the individuals presented an average of 70.88% of HRmax, what fits them in the intensity range advised by ACSM (2003). This was not possible for only 37% of the studied individuals, who presented an VO2peak average of 39.12% and the others 25% presented an HRmax average of 61.44%.

CONCLUSION

Based on HR and VO2 behavior during the aerobic phase of the hidrogymnastic class, it is concluded that the used structure in the present study will be able to provide the improvement of the cardiorespiratory aptitude of undergraduate students with similar characteristics.
Despite of that, the information that was obtained from the analysis of the different blocks provided alternatives for the prescription of hidrogymnastic classes which different purposes, helping in this way professionals of the area in their practice.

BIBLIOGRAPHY

Kruel, L.M.F. Peso Hidrostático e frequência cardíaca em pessoas submetidas a diferentes profundidades de água. 1994. Dissertação (Mestrado em Ciência do Movimento Humano) - Universidade Federal de Santa Maria, Santa Maria.

Moraes et al. Metodologia de medida de esforço para exercícios de hidroginástica em diferentes profundidades de água. Revista Kinesis, v.43, n.64, 2002.

Tamanay Street - nº 155, Bloco “L” - apto: 304, CEP 97050-640, Santa Maria/RS - Brazil labolineufsm@gmail.com

(55) 3220-8875

BEHAVIOR OF PHYSIOLOGICAL VARIABLE DURING THE HIDROGIMNASTIC CLASS

ABSTRACT

Hidrogymnastic practice has increased considerably, because it can be used to help rehabilitation as well as increase physical conditioning. However, no works about physiological variables behavior are found in literature, becoming emergent to analyze HR and VO2 behavior during aerobic phase of a hidrogymnastic class. 12 undergraduate students were studied (age of 23.43±4.08, stature of 174.75±6.47cm, 73.28±8.36kg and %GC of 12.42±4.09) in two different stages. In stage 1, an ergoscopimeter test in rolling mat was done (Mader’s protocol) and in stage 2 was realized a corporeal evaluation and also a ergometric test in rolling mat was done (Mader’s protocol) and in stage 2 was realized a corporeal evaluation and also a
LE COMPORTEMENT DES VARIABLES PHYSIOLOGIQUES PENDANT UN COURS DE GYMNASTIQUE AQUATIQUE

RESUMÉ

La pratique de la gymnastique aquatique a considérablement augmenté car elle peut être utilisée aussi bien pour la réhabilitation que pour l’amélioration du conditionnement physique. Cependant la documentation ne présente pas de travaux sur le comportement des variables physiologiques pendant un cours de gymnastique aquatique. Il a donc fallu analyser le comportement de FC et VO₂ durant la phase aérobie d’un cours de gymnastique aquatique. Douze étudiants universitaires ont été analysés (23,43±4,08 ans, estatura de 174,75±6,47 cm, 73,28±8,36 kg et %GC de 12,42±4,09) en deux étapes distinctes. Dans la première étape a été réalisé le test ergospirométrique sur tapis roulant (Protocole de Mader) et dans la seconde étape ont été faites l’évaluation corporelle et le cours de gymnastique aquatique à une température de 32°C et une profondeur d’eau à hauteur du processus xiphoïde-Les variables FC (fréquencéomètre de marque Polar) et VO₂ (analyseur de gaz Aerosport TEEM100) ont été obtenues toutes les vingt secondes. En prenant comme base les résultats obtenus 75% (par rapport à FC) et 67% (par rapport à VO₂) des sujets étudiés ont présenté des valeurs satisfaisantes en moyenne générale pendant la phase aérobie du cours. Pour ce qui est de l’analyse dans les différents blocs, on a pu observer que pour les deux premiers blocs la moyenne du %FCmax est restée au dessous de la limite stipulée par la documentation ainsi que pour les %VO₂ pointe pendant les exercices du bloc 1. Par contre, les blocs 3, 4, 5 et 6 présenteront des résultats d’intensité adéquates pour l’amélioration de la capacité cardiorrespiratoire. On a conclu que la méthodologie de la classe étudiée est suffisante pour une amélioration de la capacité cardiorrespiratoire de sétudiants. De plus, les résultats de chaque groupe ont montré qu’il est possible d’apercuevoir par cette méthodologie des cours différents pour ce groupe, offrant des choix dans la prescription de cours de gymnastique aquatique qui révèlent des objectifs différents, en aidant la pratique des professionnels du secteur.

Mot-clé: gymnastique aquatique, variables physiologiques, étudiants universitaires.

COMPORTEMENT DE VARIABLES FISIOLOGIQUES DURANTE LA CLASE DE HIDROGIMNASIA

RESUMEN

La práctica de hidrogimnasia ha aumentado considerablemente en función de poder ser utilizada tanto para la rehabilitación como para el aumento del acondicionamiento físico. Sin embargo, la literatura no presenta trabajos acerca del comportamiento de las variables fisiológicas durante una clase de hidrogimnasia, haciendo inminente analizar el comportamiento de del RC y VO₂ durante la fase aeróbica de una clase de hidrogimnasia. Fueron investigados 12 estudiantes universitarios (edad de 23,43±4,08 años, estatura de 174,75±6,47 cm, 73,28±8,36 kg y %GC de 12,42±4,09) en dos etapas diferentes. En la etapa 1, fue realizado el test ergospirométrico en estera mecánica (Protocolo de Mader) y en la etapa 2 fueron hechas la evaluación corporal y la clase de hidrogimnasia con la temperatura de 32°C y profundidad del agua a la altura del proceso xifoide. Las variables FC (frecuencia de marca Polar) y VO₂ (analizador de gases Aerosport TEEM100) fueron obtenidas a cada 20 segundo. Con base en los resultados obtenidos 75% (en relación a la FC) y 67% (en relación al VO₂) de los sujetos investigados presentaron valores satisfactorios en la media general durante la fase aeróbica de la clase. Con respecto al análisis en los diferentes bloques, se observó que para los 2 primeros bloques, la media del %FCmax permaneció bajo el límite estipulado por la literatura, así como para los %VO₂, pico durante los ejercicios del bloque 1. Ya en los bloques 3, 4, 5 e 6 presentaron resultados de intensidades adecuadas para la mejora de la aptitud cardiorrespiratoria. Se concluyó que la metodología de la clase estudiada es suficiente para la mejora de la aptitud cardiorrespiratoria de los estudiantes universitarios. Además, los resultados de cada bloque mostraron que es posible vislumbrar a través de la metodología, diferentes clases de hidrogimnasia que vislumbren diferentes objetivos, subsidiando la práctica de los profesionales del área.

Palabras-clave: Hidrogimnasia, Ritmo Cardiaco, Oxígeno de la Consumición.

COMPORTEMENT DE VARIÁVEIS FISIOLÓGIQUAS DURANTE A AULA DE HIDROGINÁSTICA

RESUMO

A prática da hidroginástica tem aumentado consideravelmente, em função de poder ser utilizada tanto para reabilitação, quanto para o aumento do condicionamento físico. No entanto, a literatura não apresenta trabalhos acerca do comportamento das variáveis fisiológicas durante uma aula de hidroginástica, tornando-se emergente analisar o comportamento da FC e VO₂ durante a fase aeróbica de uma aula de hidroginástica. Foram investigados 12 universitários (idade de 23,43±4,08 anos, estatura de 174,75±6,47 cm, 73,28±8,36 kg e %GC de 12,42±4,09) em duas etapas distintas. Na etapa 1 foi realizado o teste ergospirométrico em esteira rolante (protocolo de Mader) e na etapa 2 foram feitas a avaliação corporal e a aula de hidroginástica com a temperatura de 32°C e profundidade da água à altura do processo xídeo. As variáveis FC (frequênciómetro da marca Polar) e VO₂ (analizador de gases Aerosport TEEM100) foram obtidas a cada 20 segundos. Com base nos resultados obtidos 75% (com relação À FC) e 67% (com relação ao VO₂) dos sujeitos investigados apresentaram valores satisfatórios na média geral durante a fase aeróbica da aula. No que diz respeito à análise nos diferentes blocos, observou-se que para os 2 primeiros blocos, a média do %FCmax permaneceu abaixo do limite estipulado pela literatura, assim como para os %VO₂, pico durante os exercícios do bloco 1. Já os blocos 3, 4, 5 e 6 apresentaram resultados de intensidades adequadas para a melhora da aptidão cardiorrespiratória. Conclui-se que a metodologia de aula estudada é suficiente para a melhora da aptidão cardiorrespiratória de universitários. Além disso, os resultados de cada bloco mostraram que é possível vislumbrar através desta metodologia, diferentes aulas para este grupo, proporcionando alternativas na prescrição de aulas de hidroginástica que vislumbrem diferentes objetivos, subsidiando a prática de profissionais da área.

Palavras-chave: Hidroginástica, Frequência Cardiaca, Consumo de Oxigênio.